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Optical forces constitute a fundamental phenomenon important in various fields of science, from

astronomy to biology. Generally, intense external radiation sources are required to achieve measurable

effects suitable for applications. Here we demonstrate that quantum emitters placed in a homogeneous

anisotropic medium induce self-torques, aligning themselves in the well-defined direction determined

by an anisotropy, in order to maximize their radiation efficiency. We develop a universal quantum-

mechanical theory of self-induced torques acting on an emitter placed in a material environment. The

theoretical framework is based on the radiation reaction approach utilizing the rigorous Langevin local

quantization of electromagnetic excitations. We show more than 2 orders of magnitude enhancement

of the self-torque by an anisotropic metamaterial with hyperbolic dispersion, having negative ratio

of permittivity tensor components, in comparison with conventional anisotropic crystals with the highest

naturally available anisotropy.
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The first hypothesis on light induced forces was seem-
ingly done by Kepler, who tried to attribute the behavior of
comet (gaseous) tails directed always away from the Sun
due to the solar breeze [1]. The term ‘‘radiation pressure,’’
i.e., force acting on an uncharged body situated in an
electromagnetic field, was introduced by Maxwell, and
the first experimental evidence of the effect was reported
in 1901 [2]. The real boost of practical applications was
initiated with the discovery of optical tweezers [3]. This
has started the experiments based on precise positioning
and trapping of micro- and nanosized objects, such as
small biological species [4], and even studies of conforma-
tion events at the molecular level [5]. The concept of
optical forces has been employed in laser cooling (or
radiation pressure cooling) [6], precise particles’ sorting
[7], artificial light crystals (optical lattices) [8], quantum
computing [9], solar sails [10], and many other areas.

One of the best known examples of the self-induced
forces is the Abraham-Lorentz or radiation reaction force
resulting in self-induced damping produced by accelerat-
ing particle on itself and accompanied by far-field radia-
tion. The introduction of this force enables calculations of
spontaneous emission rate without the procedure of second
quantization [11], while full classical-quantum correspon-
dence may also be shown [12].

Typical optical forces achievable with reasonable light
intensities are, however, in the 10�9–10�12 N range, which
imposes certain limitation on the size and weight of the
objects that can be manipulated due to their stochastic
interactions with surrounding, e.g., Brownian motion and
viscosity of a surrounding medium, if present. One of the

very promising and already tested approaches for the opti-
cal force enhancement relies on the increase of the field
gradient with the help of plasmonic nanostructures [13].
Metamaterials with negative refractive index have also a
striking effect on radiation pressure, reversing its direction,
so that negative index bodies are attracted by light beam
[14,15].
In this Letter we have developed a rigorous quantum-

mechanical theory of the self-induced torque acting on a
dipole situated in a structured material environment with
arbitrary absorption, dispersion, and spatial variations. The
theoretical framework is based on the radiation reaction
approach and the rigorous Langevin local quantization of
electromagnetic excitations in coordinate domain. We have
shown that the induced torque does not necessarily depend
on the reflected waves from material boundaries and can
emerge in spatially homogeneous structures. We have
investigated this effect on the example of a radiating
dipole, e.g., a chemically excited polar molecule, situated
in anisotropic but homogeneous material. We have further
demonstrated that a dipole situated within hyperbolic an-
isotropic metamaterial exhibits a giant self-induced torque
and aligns itself in the direction perpendicular to the nega-
tive component of the permittivity tensor. The magnitude
of the torque is orders of magnitude larger than in any
other anisotropic materials existing in nature. A realistic
(not homogeneous) hyperbolic metamaterial configuration
has also been considered revealing a similar effect on a
radiating dipole.
In order to derive radiation reaction forces from the

equation of motion, we consider a one dimensional (1D)
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case of a dipole in an external electromagnetic field
described by the Hamiltonian [12]

Ĥ ¼ ~̂p2

2m
�

Z
d3 ~r ~�ð~rÞ � ~Eð~r; tÞ þ 1

2
m!2

0~x
2 þ Ĥfield; (1)

where ~̂p is the momentum operator of the particle, m is its
mass, ~�ð ~rÞ is its moment density, !0 is the undamped
oscillator angular frequency, E is the external electric field,

while Ĥfield is the total energy of the field. The coordinate ~x
describes the dipole’s internal dynamics, while the position
of the quantum system in space is described by the global
coordinate domain ~r. The interaction Hamiltonian

Ĥint ¼ �R
d3 ~r ~�ð ~rÞ � ~Eð~r; tÞ takes into account the spatial

nonlocality of the dipole wave functions by introducing
the integration over the electron density defined as

~�ð~rÞ ¼ e½c �
eð~xÞc gð~xÞ��ð~yÞ�ð~zÞ~̂x in the 1D system under

consideration and ~̂x is the unit vector in the internal coor-
dinate system. The initial state of the dipole is the first
excited state [c eð~xÞ] of the harmonic oscillator which
then spontaneously decays to the ground state [c gð~xÞ],
obtaining recoil (both translational and rotational) during
the decay process.

The next step requires the quantization of the electro-
magnetic field involved in the interaction. If the oscillator
is situated in a free space, the straightforward ‘‘plane
wave’’ quantization may be used, and the quantum expres-
sion for the force may be obtained with the correspondence
to the classical expression [12]. However, the direct field
quantization based on the field expansion over the classical
electromagnetic modes of a system, known as mode
decomposition, is not applicable for lossy systems [16].
The rigorous field quantization technique for dispersive and
lossy systems could be based on incorporation of material
degrees of freedom [17] or on the introduction of local
Langevin noise operators [18]. In the latter approach, the
field operators are strictly related to the classical electro-
magnetic Green’s functions, and the dispersion and losses
can be included without violating canonical commutation
rules. Using this formalism, the positive frequency part of
the electromagnetic field operator can be written as [19]

~̂E
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ffiffiffiffiffiffiffiffiffi
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Here, ~̂fð ~r; !Þ is the local annihilation field operator,

G
$ð~rA; ~r; !Þ is the classical electromagnetic Green’s tensor

defined by ½r � r � �ð!=cÞ2"ð~r; !Þ�G$ð ~r; ~rA; !Þ ¼
�ð~r � ~rAÞ, where ~rA is the source position, "0 is the vacuum
permittivity, and "ð ~r; !Þ is the position and frequency
dependent relative material permittivity.

Solving the Heisenberg equations of motion for the field

operators i@df̂�=dt¼½f̂�;H� and separating the oscillator-
related part from the free space contribution, we obtain the

generalized expression of the radiation reaction force

density ~frrð ~rÞ,
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where c.c. stands for complex conjugate. The force density
is introduced here instead of the usual radiation reaction
force in order to preserve the spatial nonlocality of the
oscillator.
With the help of the above formalism, it is also possible

to obtain the spontaneous emission rate and the Lamb
shift of the oscillator levels. Defining the work performed
by the radiation reaction on the oscillator, we attribute its
imaginary part to the radiative decay rate �, while the real
part will determine the Lamb shift �!,

�¼ 2!2
0

"0@c
2
Im

�ZZ
d3 ~rd3 ~r0 ~�ð ~rÞG$ð ~r; ~r0;!0Þ ~�ð ~r0Þ

�
;

�!¼� �!2
0

"0@c
2
Re

�ZZ
d3 ~rd3 ~r0 ~�ð ~rÞG$ð ~r; ~r0; �!0Þ ~�ð ~r0Þ

�
:

(4)

The well-known expressions for these parameters [18]
coincide with Eq. (4) if the spatial nonlocality of the
emitter wave function is ignored. Such ignorance will,
however, cause divergence in �!, since the real part of
the electromagnetic Green function diverges when ~r ¼ ~r0,
and requires additional treatment.
It is quite remarkable that the radiation reaction force,

having a vectorial nature, is not always aligned in the
direction of the emitting dipole, giving rise to the self-

induced torque density described by ~tð ~rÞ ¼ ~r� ~frrð~rÞ. The
measurable value in the laboratory frame is obtained by the
time averaging of the expectation value of the integrated
density,

T ¼ h ~Titime

¼ !2
0

"0c
2
Re

�ZZ
d3 ~rd3 ~r0 ~��ð ~r0Þ �G

$ð ~r; ~r0; !0Þ ~�ð~r0Þ
�
: (5)

Thus, the torque is proportional to the dipole-induced
electromagnetic field in the surrounding space vectorially
multiplied by the dipole moment. The mathematical sin-
gularity of the self-induced torque is removed by consid-
ering the spatially distributed electron wave function,
typically several nanometers for solid state emitters [20].
To illustrate the environmentally induced torques on a

radiating system, we first consider a point dipole situated
above a perfectly conducting surface. The dipole is tilted at
the angle � with respect to the surface normal and placed
at the distance d from the surface [Fig. 1(a)]. For distances
d � �, the torque on the dipole is
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T ¼ ~�2 sin2�

32�"0d
3
: (6)

This torque leads to the preferential direction of the dipole
orientation perpendicular to the surface in order to max-
imize its radiation efficiency resulting in the minimum
potential energy in the near field. This simple case empha-
sizes the feedback induced by environment on a radiating
system.

Structured materials can support more complex (than a
reflection from a mirror) Greens functions that may result
in strong self-induced torques. One of the interesting
examples is hyperbolic metamaterials—one- or two-
dimensional composites [21,22] described as an effective
anisotropic medium with hyperbolic isofrequency surfaces
in certain frequency ranges. Such metamaterials have dif-
ferent signs of the longitudinal ("k) and transverse ("?)
components of the permittivity tensor [Fig. 1(b)]. In the
following, we show the giant self-induced torque enhance-
ment in hyperbolic metamaterial in comparison to natural
birefringent crystals.

For quantitative estimation of the dipole self-action
given by Eq. (5), we have employed finite element elec-
tromagnetic simulations, assuming the Gaussian distribu-
tion of the dipole density in an effectively two-dimensional

anisotropic medium. This density ~�ð~xÞ ¼ ~�0e
�ð~x2=w2Þ,

where w is the distribution width and �0 is proportional
to the overall dipole moment, has been discretized into
a line of individual dipoles. The line discretization
corresponds to the one-dimensional model given by the
Hamiltonian in Eq. (1). Each individual dipole in the
discretization experiences a torque induced by all the rest
(but not by itself), and the total force on the dipole
is calculated as a sum over the density distribution.
Equation (5) contains the emission pattern of a dipole in
the medium, which plays a key role in the resulting sum-
mation. These dipole radiation patterns (the electric field
amplitude) in various anisotropic media are shown in
Fig. 2. The left column corresponds to the material with
300% conventional, elliptic, anisotropy ("? ¼ 1, "k¼3)
and the middle column to the homogeneous metamaterial
with hyperbolic dispersion ("? ¼ �1–0:2i, "k ¼ 3–0:2i).

The emission patterns correspond to different tilting angles
� of the dipole with respect to the extraordinary (?) axis.
While the radiation pattern of the dipole in positively
anisotropic medium is rather uniform, the hyperbolic meta-
material results in highly localized, directional emission
which is responsible for strong self-induced torques.
For quantitative estimation of the self-induced torque,

a dipole with the finite size and corresponding to the
Gaussian half-width of 2 nm (e.g., rhodamine-like mole-
cules having dipole moments of the order of several
Debye) was considered. We have first considered a posi-
tive anisotropy of only 10% ("? ¼ 2:43, "k¼3), which
approximately correspond to a rutile (TiO2) crystal. The
calculated torque is zero when the dipole is aligned
along the crystallographic directions of the material and
has a broad maximum for the orientation not coinciding
with the lattice directions (Fig. 3). With the increase of
the positive anisotropy to 300% ("? ¼ 1, "k ¼ 3, not
possible with any existing natural materials), the torque
increases by about 1 order of magnitude. In both cases,
the orientation � ¼ 90� is unstable, since the angular
derivative is positive, while orientation � ¼ 0� is stable
equilibrium, so that the dipole will align itself in the
direction of the lowest tensor component. The dipole
rotation in a positively anisotropic medium can also be
described in the static limit by the solution of the appro-
priate Poisson equation, giving the torque dependence in
the 2D case as

FIG. 1 (color online). Schematics of the radiating dipole situ-
ated above a perfect mirror and inside a hyperbolic material
realized as an infinite array of vertically aligned plasmonic
nanorods.

FIG. 2 (color online). Radiation patterns (jRe ~Ej) of a dipole
emitter in anisotropic medium: (Left) conventional (elliptic)
anisotropic medium with "? ¼ 1, "k ¼ 3, (middle) hyperbolic

medium with "? ¼ �1, "k ¼ 3, (right) layered metamaterial

realization of the hyperbolic medium. The dipole orientation
angle is measured with respect to the "? direction as indicated.
The color scale is the same for all the plots.
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T � ð"? � "kÞ sin2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"?="k

q
ð"k"?sin2�þ "2?cos

2�Þ
: (7)

Equation (7) was used to fit the angular dependence of
the numerical data (Fig. 3). The correspondence between
the numerical points and analytical static fit shows, in
particular, that our procedure of the singularity removal
is the valid numerical approach. Moreover, it may be
analytically shown that substitution of a one-dimensional
charge distribution along the dipole line into Eq. (5) leads
to Eq. (7). On the other hand, Eq. (7) is not applicable for
the hyperbolic anisotropy (e.g., torques will be complex
numbers), highlighting the demand for the developed
above quantum description.

In comparison to the positive anisotropy case, the torque
on the dipole placed in hyperbolic metamaterial ("k ¼ 3,
"? ¼ �1) has a much sharper peak (Fig. 3), originating
from the more pronounced directionality of the dipole
radiation pattern in hyperbolic medium (Fig. 2). The analy-
sis shows that the equilibrium orientation of the dipole will
correspond to the direction along the largest (positive)
component of the dielectric tensor, in contrast to a conven-
tional anisotropy case, and the overall torque is enhanced by
almost 1 order of magnitude compared to the conventional
material with the same absolute ratio of ordinary and
extraordinary permittivities. Thus, this enhancement can
be distinctively attributed to the hyperbolic dispersion of
the metamaterial, and not just to the large ratio of the tensor
components.

One of the significant questions on the way towards
practical observation of the effect is the realization of the

hyperbolic metamaterial. The finite size of the unit cell will
introduce certain limitations on the validity of the consid-
eration of a dipole within the homogenization (effective
medium) model. Qualitatively, the electromagnetic waves
with wave vectors of order of the inverse period of the
structure will be affected by the granularity of the com-
posite. On the other hand, the emitter dimension will define
the range of the radiated wave vectors implying two differ-
ent regimes: extended (bigger than a unit cell) and localized
(smaller than it) emitter.While the ‘‘extended emitter’’ could
be treated within the homogeneous material model, the
‘‘localized’’ one requires extra care. In the latter case, the
fields over the emitter dimensions will be homogeneous, yet
anisotropic. As a result, the angular dependence of the torque
will be similar to those of Eq. (6). For comparison with the
effective medium model, we have studied a layered hyper-
bolicmetamaterial realized as a periodic silica ð22 nmÞ=gold
(5 nm) stack with the effective permittivity tensor compo-
nents "? ¼ �1–0:2i and "k ¼ 2:9 at the 700 nm emission

wavelength, similar to the previously considered homoge-
neous hyperbolic material. Radiation patterns of a dipole
within layered material (Fig. 2) show similar behavior to
the homogeneous case but with a much broadened direction-
ality of emission. This in turn leads to the significant reduc-
tion of the torque (Fig. 3), but the fundamental phenomenon
of the rotation is clearly preserved.
Finally, to represent the concept of the radiation effi-

ciency maximization, corresponding to the minimum
near-field energy at the equilibrium position of the dipole,
we have calculated the orientation-dependent energy flux
through the virtual far-field sphere of 2 �m radius, inclos-
ing the radiation source (Fig. 4). For the elliptic anisotropy,
the energy flux reaches maximum when � ¼ 0�, while the

FIG. 3 (color online). Torque on a 2 nm size dipole situated in
the anisotropic medium as a function of its tilting angle with
respect to the extraordinary axis: (black squares) "? ¼ 2:42,
"k ¼ 3, (blue squares) "? ¼ 1, "k ¼ 3, (red circles) "? ¼ �1,
"k ¼ 3, (green squares) layered metamaterial with effective

parameters "? ¼ �1–0:2i, "k ¼ 2:9, not scaled. Black and

blue lines are the analytical fits, red and green lines are guides
for the eye. The rotation directions are indicated in the insets.

FIG. 4 (color online). Normalized far-field power flow through
the virtual 2 �m radius sphere as the function of the dipole
orientation angle: (blue) elliptic and (red) hyperbolic anisotropy.
The anisotropy parameters are the same as in Fig. 3. Lines are the
splines for numerical data represented by squares and circles.
Inset shows simulation geometry.
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angle � ¼ 90� maximizes the outflow of the energy for the
hyperbolic material.

In conclusion, we have proposed a novel phenomenon
of the radiation reaction torque which can be enhanced in
a metamaterial with hyperbolic dispersion. The quantum
theory of the effect in an arbitrary lossy and dispersive
material environment has been developed which is in full
agreement with the classical quasistatic model in the case
of elliptic dispersion. However, the classical description
fails in the hyperbolic case, leading to unphysical,
complex-valued torques. An idealized, homogeneous
metamaterial shows orders of magnitude enhancement of
the torque, while in a real layered hyperbolic metamaterial
the effect is larger than in metamaterials with elliptic
dispersion. Considering a rhodamine-like molecule in the
medium with 10% anisotropy, we have estimated the
expected self-induced torque (in 3D case) of several pN �
nm, which is relevant for biological applications, where the
considerable mechanical moments have the same order of
magnitude. Torques play significant roles in mole-
cular dynamics, such as DNA folding [23], and, thus, the
proposed mechanism could be applied to control the torque
by illuminating molecules placed within carefully engi-
neered nanostructures [24].
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