Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides

A. V. Krasavin and A. V. Zayats

Centre for Nanostructured Media, IRCPE, The Queen’s University of Belfast, Belfast BT7 1NN, United Kingdom

(Received 12 April 2007; accepted 25 April 2007; published online 21 May 2007)

The authors present full three-dimensional numerical modeling of passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides (DLSPPWs). They demonstrate that at telecom wavelengths a highly confined SPP mode can be guided in a single mode DLSPPW of subwavelength cross section and estimate the achievable density of photonic integration. The size of bending and splitting photonic elements based on DLSPPW can be as small as a few micrometers with pure bend loss less than 10% (0.4 dB) and the transmission efficiency exceeding 70% (total loss of about 1.3 dB). Such DLSPPW elements are important for implementation of photonic integrated circuits, guiding optical and electric signals in the same circuitry, and lab-on-a-chip applications. © 2007 American Institute of Physics. [DOI: 10.1063/1.2740485]

Surface plasmon polariton (SPP) waves are becoming widely accepted as a prospective type of optical information carrier in highly integrated photonic devices. SPPs are electromagnetic excitation coupled to electron oscillations propagating in a wavelike fashion along a metal-dielectric interface. Optical signals in the form of SPP waves can be efficiently guided and manipulated in waveguiding circuitry having subwavelength dimensions. There exist several approaches to implement plasmonic waveguiding structures based on line defects in surface polaritonic crystals, metallic stripes and wires, grooves (gaps) in a metal film, a chain of metallic nanoparticles, and metal heterostructures.

Wide metal stripes can be effective SPP waveguides, however, when the width of the stripe becomes small, the losses significantly increase due to scattering on the stripe edges, preventing scaling such waveguides down. In order to overcome this problem, dielectric waveguides for SPPs on a metal surface have been recently proposed [10–12]. Optical signals in the form of SPP waves can be efficiently guided and manipulated in waveguiding circuitry having subwavelength dimensions. There exist several approaches to implement plasmonic waveguiding structures based on line defects in surface polaritonic crystals, metallic stripes and wires, grooves (gaps) in a metal film, a chain of metallic nanoparticles, and metal heterostructures.

Wide metal stripes can be effective SPP waveguides, however, when the width of the stripe becomes small, the losses significantly increase due to scattering on the stripe edges, preventing scaling such waveguides down. In order to overcome this problem, dielectric waveguides for SPPs on a metal surface have been recently proposed [10–12]. Optical signals in the form of SPP waves can be efficiently guided and manipulated in waveguiding circuitry having subwavelength dimensions. There exist several approaches to implement plasmonic waveguiding structures based on line defects in surface polaritonic crystals, metallic stripes and wires, grooves (gaps) in a metal film, a chain of metallic nanoparticles, and metal heterostructures.

Having proven the validity of the results for 3D SPP mode propagation, we proceeded with modeling of SPP waveguide elements requiring full 3D simulations. First, we investigated coupling between two parallel waveguides in order to determine the cross-talk and achievable density of integration of DLSPPW components. The SPP mode was initially launched in one of the waveguides [right in Fig. 2(a)], and the evolution of the mode was observed during the propagation. It is found that the energy can tunnel into the second waveguide due to the overlap of the waveguide

A. V. Krasavin and A. V. Zayats

Centre for Nanostructured Media, IRCPE, The Queen’s University of Belfast, Belfast BT7 1NN, United Kingdom

(Received 12 April 2007; accepted 25 April 2007; published online 21 May 2007)

The authors present full three-dimensional numerical modeling of passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides (DLSPPWs). They demonstrate that at telecom wavelengths a highly confined SPP mode can be guided in a single mode DLSPPW of subwavelength cross section and estimate the achievable density of photonic integration. The size of bending and splitting photonic elements based on DLSPPW can be as small as a few micrometers with pure bend loss less than 10% (0.4 dB) and the transmission efficiency exceeding 70% (total loss of about 1.3 dB). Such DLSPPW elements are important for implementation of photonic integrated circuits, guiding optical and electric signals in the same circuitry, and lab-on-a-chip applications. © 2007 American Institute of Physics. [DOI: 10.1063/1.2740485]

Surface plasmon polariton (SPP) waves are becoming widely accepted as a prospective type of optical information carrier in highly integrated photonic devices. SPPs are electromagnetic excitation coupled to electron oscillations propagating in a wavelike fashion along a metal-dielectric interface. Optical signals in the form of SPP waves can be efficiently guided and manipulated in waveguiding circuitry having subwavelength dimensions. There exist several approaches to implement plasmonic waveguiding structures based on line defects in surface polaritonic crystals, metallic stripes and wires, grooves (gaps) in a metal film, a chain of metallic nanoparticles, and metal heterostructures.

Wide metal stripes can be effective SPP waveguides, however, when the width of the stripe becomes small, the losses significantly increase due to scattering on the stripe edges, preventing scaling such waveguides down. In order to overcome this problem, dielectric waveguides for SPPs on a metal surface have been recently proposed [10–12]. Optical signals in the form of SPP waves can be efficiently guided and manipulated in waveguiding circuitry having subwavelength dimensions. There exist several approaches to implement plasmonic waveguiding structures based on line defects in surface polaritonic crystals, metallic stripes and wires, grooves (gaps) in a metal film, a chain of metallic nanoparticles, and metal heterostructures.

Having proven the validity of the results for 3D SPP mode propagation, we proceeded with modeling of SPP waveguide elements requiring full 3D simulations. First, we investigated coupling between two parallel waveguides in order to determine the cross-talk and achievable density of integration of DLSPPW components. The SPP mode was initially launched in one of the waveguides [right in Fig. 2(a)], and the evolution of the mode was observed during the propagation. It is found that the energy can tunnel into the second waveguide due to the overlap of the waveguide

A. V. Krasavin and A. V. Zayats

Centre for Nanostructured Media, IRCPE, The Queen’s University of Belfast, Belfast BT7 1NN, United Kingdom

(Received 12 April 2007; accepted 25 April 2007; published online 21 May 2007)

The authors present full three-dimensional numerical modeling of passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides (DLSPPWs). They demonstrate that at telecom wavelengths a highly confined SPP mode can be guided in a single mode DLSPPW of subwavelength cross section and estimate the achievable density of photonic integration. The size of bending and splitting photonic elements based on DLSPPW can be as small as a few micrometers with pure bend loss less than 10% (0.4 dB) and the transmission efficiency exceeding 70% (total loss of about 1.3 dB). Such DLSPPW elements are important for implementation of photonic integrated circuits, guiding optical and electric signals in the same circuitry, and lab-on-a-chip applications. © 2007 American Institute of Physics. [DOI: 10.1063/1.2740485]
modes in the neighboring waveguides. The energy in the second waveguide depends on the distance along the waveguide in harmonic fashion modulated by an exponent, representing the absorption due to the Ohmic losses. The dependence of the coupling distance \(L_c \), at which all the energy of the mode is transferred to the neighboring waveguide on the distance between the waveguides cores \(d \) is presented in Fig. 2(b). The increase of the coupling length with the distance between the waveguides is exponential. When the waveguides are close to each other, \(d=700 \) nm (distance between the waveguide edges of 100 nm), the tunneling between the waveguides is very efficient with \(L_c=4.6 \) \(\mu \)m. (This property can be used for designing waveguide couplers and splitters.) When the cores of the waveguides are separated by \(d=2.6 \) \(\mu \)m the coupling between the waveguides is extremely weak \((L_c \sim 2.3) \), so at this distance the waveguides are practically not coupled. This gives us a possibility of a high level of integration of the waveguides on a photonic chip.

The first elemental structure required for DLSP waveguide circuitry is a 90° waveguide bend. We constructed a bend using a waveguide section of a circular shape with a radius \(R \) of several micrometers (see the insets of Fig. 3). As observed in the calculated near-field distributions, due to the curvature of the waveguide in the bend, the SPP guided mode is experiencing radiative losses in the form of the SPPs on the surface outside the guide and a free space light when propagating along the curved section. The transmission through the bend \(T=I_l/I_0 \) was obtained as a ratio between the power flow integrals in the core of the waveguide at the beginning \(I_0 \) and at the end \(I_l \) of the bend section. The dependence of the transmission \(T \) on a bend radius (Fig. 3, solid line) is determined by a trade-off between two factors: at small bend radii (“sharp bends”), high radiative losses limit the transmission value as the guided mode energy escapes from DLSPPW; with the increase of the radii, the total length of the bending element increases, leading to higher Ohmic losses during SPP propagation along it. Thus, there is an optimal radius \(R \sim 5 \) \(\mu \)m, when the total losses of the bend is small, leading to transmission of about 74\% (total loss of about 1.3 dB). Moreover, the transmission can be well above 90\% corresponding to the bend loss of 0.4 dB (Fig. 3, dashed line) if we make the propagation lossless, for example, by using a gain medium as a dielectric load. The level of possible integration is also fascinating comparing with the planar dielectric waveguides approach, where the size of bending elements is in the millimeter range.\(^{14}\)

![Photo](https://via.placeholder.com/150)

Another key element of integrated optics is a waveguide splitter. We simulated the DLSP waveguide splitter having the most straightforward “fork” form. The distance between the output arms was set to be \(D=2.6 \) \(\mu \)m to ensure their optical isolation from each other based on the considerations above. We studied three different shapes of the bend sections of the splitter. Following Ref. 14, where the optimal shapes for S bends of the planar dielectric optical waveguides were discussed, we used the shape of curved sections given by (i) \(D/4(1-\cos(\pi z/L_s)) \) and (ii) \(D/(2L_s)z-D/(4\pi)\sin(2\pi z/L_s) \) and varied the splitter element length \(L_s \). The bend sections were also constructed of the two connected circular arcs with radius \(R_a \) of 1.1 \(\mu \)m.
opposite curvature (iii). The angle span of the curvatures was set to obtain a desirable splitter element length and a smooth connection between them. In all three cases the bigger the length of the splitting element, the more smooth is the connection between the input and the output arms, the lower radiative bend losses. However, longer element size leads to the simultaneous increase of the propagation Ohmic losses. (For a splitter, there exists a minimum length of the bend section to satisfy a constraint on optical isolation of the output arms.) The efficiency of coupling to the output arms of the splitter was calculated as \(C = (I_1 + I_2)/I_0 \), where \(I_0 \), \(I_1 \), and \(I_2 \) are the core intensity integrals at the beginning and at the end of the splitter output arms. Due to the symmetry of the splitter, the input mode energy is divided into two equal parts \(I_1 = I_2 \). The dependences of the splitter efficiency on its length for all three shapes are presented in Fig. 4(a). With the increase of the splitter length up to 8 \(\mu m \) the efficiency \(C \) monotonously increases, reaching a broad maximum with \(C \approx 75\% \) then starts to slowly decrease due to the Ohmic losses. We can see that harmonic shape of the splitter element provides slightly better efficiency in comparison with the other two, showing similar results. Again, the coupling efficiency of the splitter can be more than 90\% for the lossless waveguiding.

We also considered other designs of the splitter, particularly based on the tunnel-coupling mechanism between two parallel waveguides, as discussed above [see Fig. 4(b)], in each case performing the optimization of the geometry. However, such designs provide similar level of the splitting efficiency as observed above.

In conclusion, using 3D numerical simulations we have characterized and optimized the main passive photonic elements based on dielectric-loaded SPP waveguide technology. The results show that a very high photonic integration density can be achieved with a distance between the waveguides just \(\sim 2.5\ \mu m \) at the telecom wavelength range. We demonstrated an efficient (>70\%) DLSPP waveguide bending and splitting elements of just a few micrometer size. Moreover their efficiency can be more than 90\% if the propagation (Ohmic) losses are compensated. Such DLSPPW photonic elements are extremely beneficial in comparison with conventional planar waveguide technology (which can provide similar loss parameters only in millimeter length scale of bend elements) and can find applications in photonic and optoelectronic integrated circuits and lab-on-a-chip sensing.

This work was supported in part by EPSRC (UK) and EC FP6 STREP PLASMOCOM. The authors acknowledge the fruitful discussions with G. A. Wurtz, S. I. Bozhevolnyi, and P. Bayvel.