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Impact of nonradiative line broadening on emission in photonic and plasmonic cavities

Pavel Ginzburg,1,2,* Alexey V. Krasavin,1 David Richards,1 and Anatoly V. Zayats1

1Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
2St. Petersburg National Research University of Information Technologies, Mechanics & Optics, St. Petersburg 197101, Russia

(Received 15 April 2014; published 20 October 2014)

A light-matter interaction modified by the material environment is one of the central topics in quantum
electrodynamics. While a strong coupling between a single emitter and a cavity and the Markovian (exponential)
relaxation regime are most straightforwardly covered by theory, real physical systems that include also various line
broadening effects may possess a much more complicated behavior. Here we propose a theoretical framework
to account for nonradiative interaction effects in emission in photonic and plasmonic cavities. The quantum
electrodynamics model formulated via a stochastic Hamiltonian approach has been developed with nonradiative
line broadening introduced via the Kubo oscillator model. The impact of competing radiative and nonradiative
processes on the emitter dynamics has been studied, showing that nonradiative relaxations, having significant
impact on processes in high-Q photonic cavities, are much less influential in the plasmonic regime. The developed
theoretical framework is not restricted to the emitter in a cavity example, but represents a general tool for multiple
stochastic Hamiltonian evolution, important for various types of interactions where either classical or quantum
noise is present.
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I. INTRODUCTION

The phenomenon of spontaneous emission of electro-
magnetic radiation is the most common and transparent
manifestation of a quantum noise. While in free space these
vacuum fluctuations are solely dependent on fundamental
physical constants and the frequency of the radiation, they
can be manipulated through the introduction of a material
environment. In spite of the overall conservation of the
total density of states [1], the electromagnetic modes can
be rearranged in the frequency domain and give rise to a
modified spontaneous emission rate, the so-called Purcell
effect [2]. The Purcell factor is approximately proportional
to the ratio of the quality factor of a cavity to its modal volume
Q

V
and can be influenced by the manipulation of these two

quantities. Photonic cavities may deliver high Purcell enhance-
ments due to their high quality factors [3], while plasmonic
nanostructures do so because of small modal volumes [4,5].
These unique properties make plasmonic structures perfect
candidates for the realization of optical antennas, with various
applications [6–9]. Being based on interference effects, modal
volumes of confined modes in photonic structures are bounded
from below by the conventional diffraction limit. On the
other hand, negative permittivity plasmonic nanostructures
can confine light much below the diffraction limit [10–12],
but due to inherent material losses have small quality factors
(of the order of tens when defined by the ratio of the real
and imaginary parts of material permittivity at the operation
frequency [13]). It is worth noting that in the plasmonic case,
the general expression for the Purcell factor is not exact due
to radiation quenching and can be used only as a qualitative
design guideline [14].

The study of modified light-matter interactions is one
of the central topics of cavity quantum electrodynamics
and is typically restricted to single-mode to single-emitter
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coupling. Nevertheless, real physical systems contain the
whole span of additional physical mechanisms influencing
the interaction dynamics, such as nonradiative transitions
and associated line broadening present in molecular and
solid-state systems [15,16]. Hence, in order to understand
the dynamic evolution of complex quantum systems in the
structured material environment, nonradiative deexcitation
dynamics should be taken into account.

In this paper we investigate the influence of nonradiative
transitions on an emitter in a cavity, either photonic [Fig. 1(a)]
or plasmonic [Fig. 1(b)]. The quantum electrodynamics model
for light-matter interaction in a cavity [17] has been reformu-
lated with the help of a stochastic Hamiltonian approach [18]
and the nonradiative broadening introduced via the Kubo
oscillator model [19]. The competition between radiative and
nonradiative processes in the system’s dynamics has been
investigated in both weak- and strong-coupling regimes.

II. MODEL CONSIDERATIONS

The leakage of a photon from a cavity is generally described
via the interaction with a thermal bath of modes having
infinite degrees of freedom. The bath degrees of freedom
could be traced out by adopting the density-matrix approach
or they could be treated as stochastic noise operators. The
equations of motion corresponding to the latter approach are
derived from the quantum Heisenberg-Langevin evolution and
are preferable over the density-matrix formalism if the time
dependence of the operators is of particular interest [17].
The Kossakowski-Lindblad equation, extensively used for
the nonunitary description of dissipative and decoherence
influenced systems, is, however, restricted to the treatment
of Markovian dynamics and cannot be used in the strong-
coupling regime [18]. Following the stochastic formulation
of the interaction, the nonradiative line broadening can be
introduced via the so-called Kubo oscillator model. The
general idea behind this approach is to modulate the natural
frequency of an oscillator ω21 by a stochastic term ωKubo(t)
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(a) (b)

FIG. 1. (Color online) Schematic representations of an emitter in
(a) photonic and (b) plasmonic cavities. The inset shows a two-level
emitter with natural and nonradiative line broadenings.

describing the nonradiative broadening. The generic equation
of motion can then be written as ẋ(t) = i[ω21 + ωKubo(t)]x(t)
and will result in the frequency broadening of the emission
line, governed by the statistics of the stochastic process in
the model. This will be accompanied by dissipation according
to the fluctuation-dissipation theorem. In the following, the
stochastic approach for the description of a two-level system
broadened by the Kubo Hamiltonian and situated in a single-
mode leaky cavity will be developed and solved.

III. MASTER EQUATIONS FOR AN EMITTER WITH
NONRADIATIVE BROADENING IN A LEAKY CAVITY

The Hamiltonian of the system Ĥtot relying on the above
considerations and decomposed into several terms, i.e., the
two-level system ĤTLS, photonic cavity Ĥcavity, electromag-
netic field outside the cavity Ĥfield, two-level-system–cavity
photon coupling ĤTLS-cavity, cavity mode–outside field cou-
pling Ĥcavity-field, and Kubo oscillator as the nonradiative
broadening description ĤKubo, is given by

ĤTLS = �
ω21

2
σ̂0,

Ĥcavity = �ωc

(
â†â + 1

2

)
,

Ĥfield = �

∫ ∞

−∞
dω ωb̂†(ω)b̂(ω),

ĤTLS-cavity = �χ (â†σ̂− + σ̂+â),

Ĥcavity-field = i�

∫ ∞

−∞
dω ν(ω)[b̂†(ω)â − â†b̂(ω)],

ĤKubo = �

√
�

2
n(t)σ̂0,

Ĥtot = ĤTLS + Ĥcavity + Ĥfield

+ ĤTLS-cavity + Ĥcavity-field + ĤKubo, (1)

where â† and â are creation and annihilation photonic
operators, respectively, with the corresponding Pauli matrices
given by σ̂+ = (0 1

0 0), σ̂− = (0 0
1 0), and σ̂0 = (1 0

0 −1). In addition,
ω21 and ωc are the central frequencies of the two-level system
and the cavity, respectively, χ is the emitter-cavity coupling
constant, ν(ω) describes the cavity mode leakage, �

2 is the
nonradiative linewidth, and n(t) is the classical noise and has

dimensions of [s−1/2], as follows from the definition of the
commutation relation.

While the Kubo term ĤKubo with 〈n(t)n(t ′)〉 = δ(t − t ′)
is already written as the stochastic Hamiltonian with an
uncorrelated noise model, the cavity leakage term can be recast
as

Ĥcavity-field = i�
√

γ [b̂†(t)â − â†b̂(t)], (2)

where the first Markov approximation of the frequency-
independent coupling constant, namely, ν(ω) = √

γ /2π , was
employed [18]. Here b(t) and b†(t) are stochastic quantum
operators, obeying the commutation relations [b(t),b†(t ′)] ∼
δ(t − t ′) and regarded as a quantum white noise with a
Gaussian distribution. Consequently, the quantum Wiener
process is defined as B̂(t,t0) = ∫ t

t0
b(t ′)dt ′ and obeys the

following relations:

dB̂(t)dB̂(t) = dB̂†(t)dB̂†(t) = 0,

dB̂(t)dB̂†(t) = (N̄th + 1)dt, (3)

dB̂†(t)dB̂(t) = N̄thdt,

while the higher-order correlations are vanishing in the
short-time limit. Here N̄th is the thermal photon occupation
number that follows the Bose-Einstein statistics of a thermal
bath N̄th = [exp( �ω

kBT
) − 1]−1. Hereafter we assume that the

chromatic dispersion of the thermal bath can be neglected
over the bandwidth of the cavity.

The system’s propagator in the interaction picture satisfies
the following Schrödinger equation:

i�
∂Û (t,t0)

∂t
= ĤintÛ (t,t0), (4)

where Ĥint = ĤTLS-cavity + Ĥcavity-field + ĤKubo. In order to
derive the quantum stochastic differential equation (QSDE),
the perturbation series should be kept to second order, as the
multiplicative noise terms will give nonvanishing contribu-
tions. The perturbation series expansion leads to

Û (t,t0) = exp

(
− i

�

∫ t

t0

Ĥint(t
′)dt ′

)

≈ 1 − i

�

∫ t

t0

Ĥint(t
′)dt ′ − 1

�2

∫ t

t0

dt1

×
∫ t

t0

dt2Ĥint(t1)Ĥint(t2). (5)

The evaluation can be performed by means of the Itô
formulation with proper time ordering of the integration.
Using the definition of the quantum Wiener process, namely,
b̂(t)dt = dB̂(t), Eq. (5) can be rewritten as

Û (t + dt,t) ≈ 1 + √
γ (dB̂†â − â†dB̂)

− 1

2
γ [N̄thââ† + (N̄th + 1)â†â]dt

− i

√
�

2
σ̂0dN − �

8
dt, (6)

where dN is the classical Wiener process [20], corresponding
to the Kubo oscillator noise. In the derivation of Eq. (6), the
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following Itô integration identities were used:

I

∫ t

t0

f (t ′)dB̂(t ′) = I

∫ t

t0

dB̂(t ′)f (t ′),

I

∫ t1

t0

∫ t2

t0

dB̂†(t ′)dB̂(t ′′)f (t ′)g(t ′′) = N̄th

∫ min(t1,t2)

t0

f (t)g(t)dt,

where I indicates an Itô-type integration.
Now the QSDE governs the time evolution of any system’s

operator �̂ in the interaction picture, given by

�̂(t + dt) = Û †(t + dt,t)�̂(t)Û (t + dt,t), (7)

leading to

d�̂ = γ

2
N̄th[2â�̂â† − �̂ââ† − ââ†�̂]dt

+ γ

2
(N̄th + 1)[2â†�̂â − �̂â†â − â†â�̂]dt

−√
γ [dB̂†â − â†dB̂,�̂] − �

4
�̂(t)dt

+ �

4
σ̂0�̂(t)σ̂0dt + i

√
�

2
[σ̂0,�̂(t)]dN. (8)

The Schrödinger picture description can be connected to the
above by adding the i

�
[Ĥ0,�̂]dt term, where Ĥ0 = Ĥtot −

Ĥint. Equation (8) is regarded as a generalized master QSDE
of the two-level system in a leaky cavity and nonradiative
line broadening. In particular, restricting the consideration to
the pure Kubo contributions [last three terms in Eq. (8)], the
relation σ̂+(t) = σ̂+(0) exp(i

√
�dN) can be derived, demon-

strating the full correspondence with the classical Kubo
oscillator case. The precise time propagator (8) enables
investigation of full time-dependent dynamics not restricted
to the Markovian approximation.

In general, the analytic description of the system of
equations (1) by means of the operators’ evolution, given by
Eq. (8), involves an infinite number of coupled QSDEs and
cannot be solved analytically. Nevertheless, neglecting the
high (more than one) number of photons in the cavity [17],
the problem can be reduced to the finite solvable set given by

d

⎛
⎜⎜⎜⎜⎜⎜⎝

〈σ̂0〉〈
â†â

〉
〈
Â1

〉
〈
Â2

〉
〈
Â3

〉

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −2χ 0 0

0 −γ χ 0 0

χ 0 − γ+�

2 2χ ωc − ω21

γ N̄th 0 −χ −γ 0

0 0 ω21 − ωc 0 − γ+�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

〈σ̂0〉〈
â†â

〉
〈
Â1

〉
〈
Â2

〉
〈
Â3

〉

⎞
⎟⎟⎟⎟⎟⎟⎠

dt +

⎛
⎜⎜⎜⎜⎜⎜⎝

0

γ N̄th

χ

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)

where the following auxiliary operators were defined: Â1 =
i(σ̂+â − â†σ̂−), Â2 = â†σ̂0â, and Â3 = σ̂+â + â†σ̂−. In par-
ticular, Â3 should be taken into account if the central
emission line of the two-level system is detuned from the
cavity resonance, namely, ω21 	= ωc. The set of equations

(9) is formulated for statistically averaged operators, where
nonanticipating noise terms were averaged out due to the
Itô-type formulation of the stochastic process. The system
of equations (9) can be solved analytically via (5 × 5)-matrix
diagonalization; however, numerical integration routines were
used in the following in order to simplify cumbersome
expressions.

IV. NUMERICAL RESULTS

We have studied several possible scenarios for different
relative cavity and emission lifetimes, corresponding to weak-
and strong-coupling regimes and low-Q (plasmonic) and high-
Q (photonic) cavities. The two-level system’s time-dependent
population Pa = 1+〈σ̂0〉

2 and photon number state 〈â†â〉 in
the cavity dynamics have been investigated. The system’s
parameters were chosen to correspond to realistic character-
istic values of similar optical arrangements. In particular, the
radiative lifetime of an emitter in the free space �−1

0 was
chosen to be 1 ns, the nonradiative damping time (�

2 )−1 is
1 ps, and the central emission frequency, resonant with the
cavity (ω21 = ωc), corresponds to the vacuum wavelength
500 nm. The rest of the parameters were defined in the standard
way to allow comparison between the model parameters (ωc

and γ ) and the experimentally measured cavity parameters:
Q = ωc

γ
, the cavity quality factor, which depends on the

leakage rate γ , and �C = �0Q
2πc3

V ω3
c

, the cavity decay rate,
which depends on Q and the cavity modal volume V and
is related to the coupling constant χ = 0.5

√
γ�C . While all

the above quantities and relations were defined for the ideal
(without nonradiative broadening) scenario [17], they will be
used for the solution of the system of equations (9) in order to
compare possible physical situations. The actual design of the
cavity, such as material composition, size, and position of the
emitter relative to the cavity, will obviously affect the quantum
dynamics, but all these factors are taken into account in a model
description via coupling constants in the Hamiltonians (1). The
nonradiative and radiative times may become comparable in
both plasmonic and photonic cavities, as the radiative rate is
affected by the Purcell factor of a cavity. The differences in the
quantum dynamics of the emitter in photonic and plasmonic
cavities are described below.

A. Photonic cavity

The case of a photonic cavity is presented in Fig. 2. To
understand the impact of the nonradiative broadening on
the evolution of the emitter, the nonradiative scattering was
first neglected [Figs. 2(a) and 2(b)] and then reintroduced
[Figs. 2(c) and 2(d)]. For a small quality factor of the cavity,
without nonradiative broadening, the exponential decay of
the excited-state population is observed. Since the emitted
photon leakage rate from the cavity is much faster than the
Rabi oscillation frequency, the probability of photons to be
reabsorbed by the emitter is negligible and they are radiated
in the far field outside the cavity. Small Q and nonradiative
broadening result in the exponential decay of the emitter
as well. In this case, however, the inequality of rates γ 

�governs the exponential decay due to the nonradiative energy
relaxation. In both of the above cases, a pure exponential decay
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FIG. 2. (Color online) Dependence of the time evolution of an emitter in a photonic cavity on a cavity quality factor: (a) and (c) probability
of the two-level system being in the excited state and (b) and (d) number state of the cavity photon. The emitter (a) and (b) without and (c) and
(d) with nonradiative broadening has been considered.

is observed and is the direct result of vanishing environmental
feedback, since the Purcell factor here is small. It is worth
noting that the exponential lifetime decreases rapidly with the
increase of the Q factor of the cavity.

However, the increase of the quality factor reduces the
probability of the photon escaping from the cavity and, as a
result, increases the probability of reabsorption. This manifests
itself in the oscillatory behavior of the emitter’s inversion
[Fig. 2(a)], which represents multiple reabsorption-reemission
events. While this intuitive description works in the absence of
nonradiative processes, the presence of the nonradiative decay,
according to the fluctuation-dissipation theorem, smears out
the Rabi oscillations in the cavity. The coherence buildup
between the emitter and the cavity photon observed in Fig. 2(a)
is completely destroyed by the short-memory scattering
process [Fig. 2(c)]. In other words, additional noise destroys
the quantum entanglement between the emitter and the cavity
photon. As a result, previously observable revivals in the
dynamics are totally suppressed by a pure exponential decay
[Fig. 2(c)]. Thus, in the high-Q regime, the instantaneous
Purcell factor is high, but does not reflect the emission rates
because of the probable photon revivals (it should be noted
that the Purcell factor defined as the ratio of the emission rates
in vacuum and structured environments is strictly valid only
for exponential decays).

The number state time evolution has also nontrivial dy-
namics in the high-Q photonic cavity regime [Fig. 2(b)]

for same reasons as discussed above. Moreover, the number
state of the cavity photon reaches much lower values when
nonradiative processes are considered [Fig. 2(d)] because of
the increased probability of dissipation. The overall quantum
yield of nonradiatively broadened systems is worse than those
with a natural linewidth.

B. Plasmonic cavity

In the case of a plasmonic cavity, the radiation leakage rate
is much faster since the quality factor (taken in the simulations
to be 100 or 1000) is relatively low. Here the dissipative losses
of the cavity’s material components are ignored, but could
be further introduced via additional degrees of freedom [21].
These low-Q low-V constraints impose the relation γ � �

for any reasonable physical scenario of the emission. As a
result, nonradiative processes do not influence the evolution
of the system: The radiative processes become faster (due to
small modal volumes), but emitted photons leave the cavity
even faster. For example, in silver spherical nanoparticles with
a radius bigger than 30 nm, radiation damping predominates
internal material losses [13]. The dependence of the two-level
system population in the cavity with Q = 100 [Fig. 3(a)] and
the cavity photon number state [Fig. 3(b)] on the cavity modal
volume at constant quality factor is almost insensitive to the
presence of the nonradiative damping. Here the Purcell factor is
large owing to the small model volume of the plasmonic cavity.
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FIG. 3. (Color online) Dependence of the time evolution of an emitter in a plasmonic cavity on a cavity modal volume: (a) and (c)
probability of the two-level system being in the excited state and (b) and (d) number state of the cavity plasmon for (a) and (b) Q = 100 and
(c) and (d) Q = 1000. The emitter without and with nonradiative broadening exhibits similar behavior.

In the large modal volume regime, the decay law is almost
exponential; however, small deviations are observed owing to
the relatively large quality factor of the cavity (Q = 100). For
smaller Q, the law has a pure exponential nature.

In order to observe a nontrivial time evolution of the emitter,
namely, a strong-coupling regime, very small modal volumes
of plasmonic cavities should be achieved. Nevertheless, the
required values can be obtained with specifically designed
structures [22] or with small nanoparticles. The strong-
coupling regime in plasmonic nanostructures has already
been observed experimentally [23–25]. As in the case of
a photonic cavity, the Purcell factor has no direct physical
meaning in the strong-coupling regime. The evolution of the
plasmon population numbers, when small modal volumes are
considered, also poses nontrivial (nonexponential) behavior.
Similar effects can also emerge as the manifestation of
the strong near-field feedback [21]. Recently, high quality
plasmonic cavities were demonstrated, showing Q factors of
more than 1000 [26]. While the qualitative behavior for both
Q = 100 and 1000 cavities is similar and the main features
are preserved, such as the number of revivals, much longer
characteristic radiative lifetimes and higher revival intensity
for Q = 1000 can be observed [cf. Figs. 3(a) and 3(b) and
Figs. 3(c) and 3(d)]. Photonic cavities typically have higher Q

factors than plasmonic ones but relatively large volume V and
low damping, so that the main loss mechanism is the radiative

loss. In contrast, plasmonic cavities have a limited value of Q

but small V , with a strong stochastic (Ohmic) loss channel.
The influence of either a photonic or a plamsonic cavity is to
make the radiative time comparable to the nonradiative one
(i.e., 1 ps) and even faster (as in the case of small-volume
plamsonic cavities), which leads to a competition between
radiative and nonradiative transitions.

V. CONCLUSION

The evolution of a quantum system with nonradiative
broadening coupled to a leaky cavity has been investigated
in different regimes. In particular, the regime of comparable
radiative and nonradiative lifetimes, where commonly used
perturbative approaches fail, was analytically treated via
quantum stochastic differential equations. We have demon-
strated that some nonradiative mechanisms, being of particular
significance to radiative processes in high-Q photonic cavities,
are much less influential in the plasmonic regime. Optical
cavities, based on various approaches, e.g., Fabry-Pérot,
whispering gallery, and photonic crystal designs, could deliver
Q factors up to 1010 (whispering gallery) and modal volumes
as small as (λ/n)3 (photonic crystal) and cover all the regimes
investigated here. Plasmonic cavities in the localized plasmon
resonance regime have Q factors not exceeding typically 100
(limited by the ratio between real and imaginary material
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permittivity of metal components of resonators), while in the
polaritonic regime (propagating plasmons) these Q factors
may have higher values [26]. Modal volumes of these cavities
could be as small as λ3/1000, overlapping with the case
studied in this paper. The proposed model allows one to
describe the Purcell effects in various kinds of cavities in the
presence of loss when a normal description via Q factors
fails.

The developed theoretical framework is not limited to the
presented examples and represents a general tool for multiple
stochastic Hamiltonian evolutions. In particular, the process of
quantum-dot blinking (the random transitions between bright

and dark states of an emitter, subject to continuous pumping)
is the manifestation of the competition between the radiative
and nonradiative processes [27] and could be treated with the
help of the developed technique. Higher-order spontaneous
processes, such as spontaneous two-photon emission [28],
could be also analyzed, including plasmonic cavity-assisted
enhancement [29,30].
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